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Abstract—Human skeletons provide a compact representation
for action recognition. Compared to 3D skeletons, 2D skeletons
lack view-independence and depth, making them less robust for
motion analysis. However, 3D skeleton data requires specialized
hardware, limiting its practicality, especially in outdoor or
dynamic settings. In contrast, 2D skeletons can be extracted
from standard RGB videos, making them more accessible. To
address this, we propose 2D3-SkelAct, a 2D skeleton-based
action recognition model. It maps 2D inputs to a 3D latent
space, where pose and view features are decoupled. Additionally,
2D3-SkelAct distills motion cues from 3D models, enhancing
motion detail capture while keeping the benefits of 2D data.
Specifically, the pipeline of our 2D3-SkelAct consists of two steps:
pose-view decoupling and pose-view distilling. First, we use a
spatio-temporal transformer to decouple 2D skeleton sequences
into latent pose and view features, enhancing the model’s ability
to learn motion dynamics. Next, these decoupled features are
separately integrated into the 2D skeleton model through two
cross-attention modules, allowing it to extract discriminative
motion features while mitigating uncertainties in 3D viewpoint
and depth. Additionally, we distill motion cues from 3D models
to compensate for the limitations of 2D skeletons. Remarkably,
our model can seamless integrate with various skeleton feature
extractors. We validate the proposed 2D3-SkelAct through exten-
sive experiments, demonstrating its adaptability across different
model architectures as where consistent improvement achieving.
When combined with advanced skeleton feature extractors,
2D3-SkelAct achieves state-of-the-art performance in 2D skeleton-
based action recognition.

Index Terms—Action recognition, skeleton representation
learning, decoupling, distillation.

I. INTRODUCTION

HUMAN action recognition plays a crucial role in various
applications, such as intelligent video surveillance [1],

[2], human-computer interaction [3], and sports analysis [4].
Skeleton-based action recognition has emerged as an effective
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approach due to its efficiency in capturing critical human
movement information, significantly reducing computational
demands compared to traditional video-based methods. There-
fore, skeleton-based human action recognition has become a
key research area in computer vision.

Traditionally, skeleton-based action recognition relies on
3D skeleton data, which provides depth-aware and view-
independent representations captured by specialized equipment
like depth cameras [5]. This approach enhances robust-
ness and accuracy by offering detailed structural information
about human movement. However, using 3D skeletons for
action recognition presents logistical and technical challenges.
Acquiring 3D data requires expensive hardware and has lim-
ited spatial coverage, making it impractical for large-scale
or outdoor applications. The challenge grows when tracking
multiple subjects in dynamic or crowded environments, where
occlusions and interactions degrade data quality. These limi-
tations make 3D-based methods costly and difficult to deploy
in real-world scenarios.

In response to these challenges, there has been a growing
interest in methods that estimate 3D skeletons from 2D poses
captured in standard RGB video footage [6], [7], [8], [9].
These approaches typically leverage deep learning models to
predict 3D joint locations from monocular images or videos,
tackling the fundamental difficulty of inferring 3D structures
from 2D projections. While this strategy removes the need
for expensive and complex 3D capture equipment, making
3D action recognition more accessible, it introduces its own
limitations. Converting 2D poses into 3D inherently leads to
depth ambiguities, causing inaccuracies in reconstructed poses.
Additionally, this process is highly susceptible to errors from
occlusions, depth estimation uncertainties, and the natural vari-
ability of human movement, making it a persistent challenge
[10]. Moreover, these estimation methods rely heavily on the
availability and quality of training data. The performance of
models trained on datasets captured in controlled environments
may degrade when applied to “in-the-wild” scenarios, charac-
terized by diverse and unpredictable settings.

In contrast, 2D skeleton data, which is directly derived
from RGB video, offers a more accessible alternative for
skeleton-based action recognition [11], [12]. Without the need
for specialized hardware, it offers a scalable solution across
diverse environments. Since 2D skeletons are obtained from
standard video footage, they can adapt to various environ-
mental conditions without requiring controlled lighting or
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Fig. 1. (a) The previous methods use separate models for recognizing 2D and 3D skeleton actions. Because of variations in viewpoint and pose depth, 2D
models often have lower accuracy compared to 3D models. (b) Our 2D3-SkelAct is designed for 2D skeleton action recognition but achieves competitive
performance with the 3D models. The key contribution is decoupling 3D pose and view features using 2D inputs and distilling motion clues from 3D models.

backgrounds. This flexibility makes them particularly useful
in dynamic and unstructured settings where deploying 3D
capture technology is impractical. However, 2D skeletons are
inherently limited by their sensitivity to viewpoint changes and
their inability to fully capture depth and fine-grained motion
details, reducing their robustness in action recognition tasks.

The discrepancy between the depth-rich accuracy of 3D data
and the pragmatic flexibility of 2D data drives the exploration
of more advanced solutions. To address the contrast issue of
2D vs 3D skeleton data, we propose a novel model 2D3-
SkelAct for robust 2D skeleton human action recognition. Our
2D3-SkelAct effectively converts 2D skeleton data into a 3D
latent feature space through the strategic implementation of
decoupling and distillation techniques, thus capitalizing on
the advantages offered by 3D skeleton data without directly
using it as input. In brief, as shown in Figure 1, central to our
pipeline is the fantastic decoupling of pose and view features
within the 3D latent space, and utilizing 2D inputs to distill
enriched motion information from 3D models.

Specifically, our 2D3-SkelAct involves two key steps, i.e.,
pose-view decoupling and pose-view distilling. In the first step,
we use a spatio-temporal transformer [13] to decouple 2D
skeleton sequences into 3D latent pose and view features,
enhancing their ability to capture fine-grained motion and
view-dependent variations. To achieve this, we introduce a
2D-to-3D supervision strategy, leveraging 3D ground truth to
guide the learning of latent poses and views. It reconstructs
3D skeletons from latent poses and generates view-dependent
2D skeletons by mixing latent pose and view features.

In the second step, we integrate the decoupled pose and view
features into a 2D skeleton feature extractor using pose-aware
and view-aware cross-attention modules. The latent pose fea-
ture refines depth perception for distinct motion representation,
while the latent view feature helps handle camera viewpoint
variations. Additionally, we apply knowledge distillation in the
pose-aware module to incorporate extra 3D motion cues during
training. This strategy enhances motion feature extraction,
mitigates viewpoint and depth uncertainties, and overcomes
the inherent limitations of 2D-based models.

Notably, our 2D3-SkelAct model requires only wild
2D skeleton inputs during inference. This simplifies the
action recognition process in real-world applications while

maintaining high accuracy and adaptability. Overall, our con-
tributions can be summarized as follows:
• We propose 2D3-SkelAct, a novel 2D skeleton action

recognition model that bridges the gap between 2D and
3D skeleton features. By strategically leveraging 3D latent
feature space, the model enhances the robustness of 2D
skeleton-based action recognition, overcoming limitations
in depth representation and view-dependence.

• A pose-view decoupler is proposed, supported by a
2D-to-3D supervision strategy. This decoupler explicitly
separates pose and view features into a 3D latent space
during training, enabling refined motion representation
while requiring only 2D skeleton inputs during inference.

• Two cross-attention modules are introduced to distill
discriminative motion features from the decoupled latent
pose and view features. These modules effectively address
uncertainties in depth and viewpoint, allowing the model
to extract fine-grained motion features and adapt to real-
world variations.

• Extensive experiments are conducted to validate the
effectiveness and versatility of 2D3SkelAct, the signifi-
cant performance gain across various model architectures
demonstrates its adaptability.

II. RELATED WORK

A. Skeleton-Based Action Recognition

Skeleton-based action recognition has evolved significantly,
from early manual feature design methods [14], [15] to modern
deep learning approaches. Initially, the development of action
recognition systems was constrained by the limitations of man-
ually designed features, which focused on joint or body part
attributes. These early approaches struggled to encapsulate the
complex, semantic nuances of skeletal movements, rendering
them inadequate for capturing the full scope of human actions.

The advent of deep learning technologies, notably Recurrent
Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs), marked a pivotal shift in the field. RNN-based
methods [16], [17] capitalized on their ability to process
sequential data, addressing the temporal dynamics of variable-
length skeleton sequences. Meanwhile, CNN-based methods
[18], [19], [20], [21], [22] introduced a novel approach
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by encoding these sequences into pseudo-images, facilitat-
ing spatial-temporal representation learning. Despite these
advancements, both RNNs and CNNs encountered difficulties
in fully grasping the intricate spatial-temporal interplay inher-
ent in skeletal movements.

The emergence of Graph Convolutional Networks (GCNs)
[23], [24], [25], [26], [27], [28] represented a significant
leap forward, treating skeleton data as graphs to capture the
relationships between joints. This approach allowed for a
more nuanced modeling of joint dynamics over time, signif-
icantly improving action recognition accuracy. Several recent
methods have expanded on this foundation. VN-GAN [29]
leverages Generative Adversarial Networks (GANs) to nor-
malize skeletons to a unified viewpoint, enhancing cross-view
consistency. DKE-GCN [30] improves efficiency by employ-
ing decoupled knowledge distillation for lightweight models.
TranSkeleton [31] incorporates a topology-aware Transformer
to better capture spatial-temporal dependencies, while [32]
enhances robustness through cross-view learning with multi-
scale fusion.

Despite these advancements, both 3D and 2D skeleton-
based action recognition systems face inherent limitations.
3D skeleton action recognition systems, while robust and
capable of capturing depth information, are often constrained
by their reliance on specialized hardware and are limited in
their application to environments where such equipment can
be feasibly deployed. Furthermore, the processing of 3D data
requires significant computational resources, limiting its scal-
ability and flexibility. On the other hand, 2D skeleton action
recognition systems, which are more readily derived from
widely available video data, suffer from a critical lack of depth
information. This absence reduces robustness, particularly in
scenarios involving complex actions or varying viewpoints.
The 2D approach’s inability to account for view independence
significantly hampers its effectiveness, making it challenging
to achieve high accuracy in diverse conditions.

To address these issues, the proposed 2D3-SkelAct method
enhances mainstream network structures, enabling them to
extract rich motion features while mitigating the limitations of
existing methods. While other works focus on comprehensive
skeleton motion representations through contrastive learning,
such as AS-CAL [33], ISC [34], MS2L [35], CrosSCLR
[36], and AimCLR [37], these methods are tailored for 3D
skeletal data and cannot fully exploit 3D information for
2D skeleton sequences. In contrast, inspired by [38] and
[39], which enhance shape and skeleton perception, our 2D3-
SkelAct introduces 3D latent information into 2D models,
effectively combining the strengths of both modalities and
enhancing robustness in complex action recognition tasks.

B. Knowledge Distillation

Knowledge Distillation (KD) is a critical technique in model
compression, facilitating the transfer of knowledge from a
larger, more capable teacher model to a smaller, efficient
student model. The essence of KD lies in utilizing the soft
targets generated by the teacher model as a guiding mechanism
for training the student model, significantly enhancing the
student’s performance by capturing the intricate relationships

among categories [40]. Recent advancements in KD have
expanded its application to include both intermediate fea-
ture distillation and logit distillation, marking a significant
shift towards a more comprehensive approach to knowledge
transfer. Intermediate feature distillation [41], [42] focuses on
leveraging the rich information embedded in the intermediate
layers of the teacher model, while logit distillation [43], [44]
continues to utilize the traditional method of transferring
knowledge through the soft targets of the output layer. This
dual approach enables a more nuanced and effective transfer of
knowledge, enriching the student model with high-level output
and deeper feature-level insights.

Moreover, the advent of online KD [45], [46] has introduced
a dynamic aspect to the distillation process, allowing for a
simultaneous and mutual learning process among multiple
student models. This method eliminates the static teacher-
student roles, fostering a more flexible and interactive learning
environment. In action recognition tasks, KD has been applied
to leverage high-level knowledge from teacher networks, such
as depth [47], temporal information [48], and optical flow
[49], [50], [51]. In our study, we use online distillation to
transfer depth and viewpoint information from a 3D skeleton
to a 2D skeleton model. Our 2D3-SkelAct is the first method
to enhance 2D skeleton action recognition by distilling motion
cues from 3D skeletons, thereby incorporating complementary
3D information and effectively leveraging the strengths of both
modalities to overcome the limitations of traditional 2D action
recognition systems.

III. METHOD

As illustrated in the left side of Figure 2, given a 2D skeleton
sequence X ∈ RT×J×2, where T is the sequence length and J is
the number of the joints, our 2D3-SkelAct decouples it into the
latent pose ψ and view φ features through a motion decoupler
E(·). This process can be formulated as:

E(X) 7→ {ψ, φ}. (1)

Simultaneously, the 2D motion feature x ∈ RT×J×C is
extracted by a 2D model F(·) from the input skeleton
sequence, where C is the channel dimension. Subsequently,
the extracted 2D motion feature is fused with the decoupled
latent pose and view features in a 3D latent space through the
carefully designed pose-aware cross-attention module fp(·) and
view-aware cross-attention module fv(·), respectively. These
cross-attention modules exploit beneficial 3D information to
enrich the 2D motion features. This process is formulated as:

µ( fp(ψ, x), fv(φ, x)) 7→ {xψ, xφ}, (2)

where µ(·) is the cross-domain connections between the pose-
aware and view-aware branches. Finally, two classifiers are
employed to predict the classification score using the pose-
aware motion feature xψ and the view-aware motion feature
xφ respectively, and the final result is obtained by averaging
the outputs of these two classifiers.

A. Pose-View Decoupling

The pose-view decoupling in 2D3-SkelAct, illustrated on
the right side of Figure 2, involves pre-training a 2D skeleton
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Fig. 2. On the left is an overview of the 2D3-SkelAct pipeline. 2D3-SkelAct decouples latent pose ψ and view φ from the input 2D skeleton sequence X,
refines the 2D motion features x within a 3D latent space, and uses the 3D-enhanced 2D motion features for classifying skeleton actions. On the right is the
structure of the 2D3-SkelAct decoupler. The decoupler E(·) is pre-trained through our 2D-to-3D supervision strategy, which utilizes two decoders D(·) and
D′(·) to reconstruct the pose-view mixed skeletons.

encoder to separate latent pose and view features from input
2D sequences. These latent features implicitly encode 3D
depth and viewpoint information, which are crucial for robust
skeleton-based action recognition. To achieve this, inspired by
[13] we employ a spatio-temporal transformer to build the
2D skeleton encoder. The spatial transformer block computes
self-attention between joints within each frame, capturing
spatial relationships across the body. Simultaneously, the tem-
poral transformer block applies self-attention across frames,
modeling global temporal dependencies to enhance motion
understanding. These two blocks are utilized alternately to
achieve enhanced spatio-temporal feature encoding. However,
since 2D skeleton data inherently lacks depth and its viewpoint
is implicitly included in the joint coordinates, it is challenging
to recover this crucial information from 2D input. To address
this challenge, as described below, we designed a 2D-to-3D
supervision strategy to train our 2D skeleton decoupler.

2D-to-3D Supervision Strategy: Given a batch of 2D skele-
ton sequences X = {Xi}

N
i=1, where i denotes the i-th sequence

and N denotes batch size. Each sequence is obtained from
distinct camera viewpoints and expresses different actions. The
spatial-temporal transformer encodes them into two batches
of latent features, i.e., ψ and φ. Subsequently, we introduced
two skeleton decoders, i.e., a 2D decoder D(·) and a 3D
decoder D′(·), to reconstruct the corresponding 2D and 3D
sequences using the extracted two batches of latent features.
This approach, elaborated below, ensures that one batch is
dedicated to capturing the pose-aware feature, while the other
represents the view-aware feature. These decoders are also
constructed with spatial-temporal transformer blocks.

Empirically, similar to the 3D pose estimation process [13],
the reconstruction of 3D skeleton sequences can be achieved
by decoding the extracted pose-aware features. Therefore, the
3D skeleton decoder takes the latent pose feature as input and
generates the corresponding view-independent 3D skeleton
sequence, which can be formulated as:

X̂′i = D′(ψi), (3)

where X̂′i is the reconstructed i-th 3D skeleton sequence in a
batch. Then, the 3D reconstruction loss L3D(X̂′, X′) can be
calculated by aligning the generated 3D sequence and the
ground-truth 3D sequence to supervise the learning of the
latent pose features, enabling the decoupler to extract pose
depth information and construct a reasonable 3D latent space.

The 2D skeleton decoder serves two objectives. Firstly, it
aims to utilize the decoupled pose feature ψi and the view

feature φi to reconstruct the input 2D skeleton sequence Xi.
Secondly, it seeks to estimate new 2D skeleton sequences by
randomly combining the pose and view features. For instance,
a 2D skeleton sequence X j,k can be estimated by decoding
the pose feature ψ j and the view feature φk, indicating the
projection of the j-th skeleton action from the perspective of
the k-th viewpoint. These processes can be formulated as:

X̂a,b = D([ψa, φb]), (4)

where a, b ∈ {1, . . . ,N} and [·] represents the feature con-
catenation. This formulation represents the 2D reconstruction
process when a = b, and denotes the process for estimating
mixed 2D sequences when a , b. Finally, the 2D recon-
struction loss L2D(X̂, X) can be calculated by aligning the
reconstructed 2D sequences with the input sequences. The
mixed 2D estimation loss Lmix(X̂, X) is calculated by aligning
the estimated 2D sequences with the projected 3D ground-
truth on the corresponding viewpoints. These two supervisions
allow the pose and view features associated with 2D skeleton
sequences to be fully decoupled within the constructed 3D
latent space.

In our implementation, each of L3D, L2D, and Lmix consists
of three components, i.e., the WMPJPE loss, the TC loss,
and the MPJVE loss, which is inspired from pose estimation
methods [13]. The decoupler and the decoders in our pose-
view decoupling process can be optimized by:

min λ3DL3D + λ2DL2D + λmixLmix, (5)

where λ3D, λ2D, and λmix are the loss balancing factors.

B. Pose-View Distilling

The pre-trained decoupler in the pose-view decoupling step
encodes pose and view features from 2D skeleton sequences
into a 3D latent space. However, these features lack explicit
motion information, making them insufficient for direct action
classification. To address this, the pose-view distilling step in
2D3-SkelAct leverages these decoupled features to enhance
2D skeleton models, extracting robust and discriminative
motion features. This process involves two key challenges:
(1) learning view-aware motion features that remain invariant
to viewpoint changes, and (2) learning pose-aware motion
features that incorporate 3D depth information. As illustrated
in Figure 3, we tackle these challenges by constructing two
network branches and designing two cross-attention modules
to effectively integrate view and pose features into the motion
representation.
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Fig. 3. The detailed structure of 2D3-SkelAct pipeline. Our pipeline consists of two branches to enhance the 2D motion feature in the 3D latent space and
distill rich motion clues from the 3D model. (The 3D model is not utilized during inference.)

1) View-Aware Representation Learning: Let xi denote the
2D skeleton feature extracted by the i-th layer of the 2D
model. We utilize a cross-attention to fuse the decoupled latent
view feature φ with xi, thereby introducing camera viewpoint
information to the 2D model. φ is used to generate Key
and Value and xi serves to generate Query in this attention
block. This view-aware cross-attention module (VAM) can be
formulated as:

Q = xiW1,K = φW2,V = φW3,

xφi = softmax
�

QKT

√
C

�
V + xi, (6)

where W is the linear mapping matrix and C is the channels.√
C represents a scaling factor to normalize the dot products.
2) Pose-Aware Representation Learning: Beyond the

implicit viewpoint information, depth information is entirely
absent in 2D skeleton sequences. To achieve pose-aware
motion feature learning, we employ both cross-attention and
knowledge distillation strategies to extract rich motion clues
from the decoupled latent pose feature ψ and the 3D skeleton
model. Specifically, a multi-layer perception block (M) is
utilized to map the 2D skeleton feature xi to the 3D latent
space, producing a mimetic 3D feature x̃i. Next, a cross-
attention module is utilized to fuse the decoupled latent pose
feature ψ with x̃i, thereby introducing pose depth information
to the 2D model. Similar to the VAM, ψ is used to generate
Key and Value, and x̃i serves to generate Query in the attention
block. This pose-aware cross-attention module (PAM) can be
formulated as:

Q = MLP(xi)W1,K = ψW2,V = ψW3,

xψi = softmax
�

QKT

√
C

�
V + MLP(xi). (7)

During training, we align the mimetic 3D feature x̃i with
the corresponding feature x′i of the 3D model, thereby dis-
tilling supplemental motion clues absent in the 2D feature.
Furthermore, logit knowledge distillation is applied to the
classification scores of this branch to transfer pose-aware
information from the 3D latent space fully.

The VAM and PAM introduced above can be applied to both
the joint and temporal dimensions of the 2D skeleton features.
This allows for emphasizing salient joints and critical timing in

the skeleton sequences, considering both viewpoint and depth
information.

3) Training: The 2D model, the 3D model, and the
proposed PAM and VAM are trained end-to-end in our 2D3-
SkelAct. Notably, the 3D model does not participate in the
inference process. Thus, our 2D3-SkelAct only requires 2D
skeleton input during inference and can obtain discriminative
motion features for accurate action classification. The training
objective can be formulated as:

min λ3DL3D
CE + λpLp

CE + λvLv
CE

+ λFDLFD
MS E + λLDLLD

DKD (8)

where LCE is the cross-entropy loss between ground truth and
predicted labels. LMS E is the mean squared error for feature
distillation. LDKD is the DKD loss [44] for logit distillation.
λ3D, λp, λv, λLD and λKD are loss balancing factors. Moreover,
to bolster training stability, we utilize residual connections in
the network blocks of our 2D3-SkelAct.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols

We employ four popular skeleton datasets to evaluate our
2D3-SkelAct comprehensively.

1) NTU-RGB+D 60: NTU-RGB+D 60 (NTU-60), a com-
prehensive dataset for human action recognition, features 60
diverse action categories performed by 40 subjects, accumulat-
ing a total of 56,880 3D skeleton sequences. In our study, we
adhere to the evaluation protocols recommended by the dataset
authors: cross-subject (X-sub) and cross-view (X-view). The
X-sub protocol splits the dataset based on the performers,
using sequences from 20 subjects for training and the remain-
ing 20 for testing. Conversely, the X-view protocol segregates
the data based on the viewpoint, designating sequences from
cameras 2 and 3 for training, with sequences captured by
camera 1 reserved for testing.

2) NTU-RGB+D 120: An expansion of NTU-60, NTU-
RGB+D 120 (NTU120) doubles the action categories to
120 and extends the dataset to 114,480 skeleton sequences
performed by 106 subjects. This version introduces a more
demanding evaluation protocol, cross-setup (X-set), which
supersedes the X-view protocol from NTU-60. The X-set
protocol categorizes sequences into 32 setups, differentiated
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by camera distance and background, with half of these setups
allocated for training and the other half for testing.

3) PKU-MMD: Following the previous method [34], we
segment action instances in PKU-MMD [52] using temporal
annotations for 3D action classification, applying the cross-
subject protocol for dataset division. PKU-MMD consists of
two phases: PKU-MMD I (PKU-I) and PKU-MMD II (PKU-
II). PKU-I includes 18,841 training samples and 2,704 test
samples. PKU-II is more challenging due to increased noise
from wider viewpoint variations, containing 5,332 training
samples and 1,613 test samples.

4) UAV-Human: UAV-Human [53] is a large-scale dataset
designed for UAV-based human behavior analysis, containing
22,476 high-definition videos captured in both indoor and
outdoor environments under diverse lighting and weather
conditions. The use of drone footage introduces unique ele-
vated viewpoints, creating additional challenges for action
recognition due to variations in perspective and occlusions.
To support robust evaluation, the dataset provides two cross-
subject protocols: CSv1 and CSv2, which define different
subject splits for training and testing.

5) Northwestern-UCLA: The Northwestern-UCLA skele-
ton dataset, introduced by [54], comprises 1,494 video clips
spanning 10 action categories. Each action was recorded using
three Kinect cameras from different viewpoints and performed
by 10 individuals. Following the standard NW-UCLA evalua-
tion protocol, we use data from two camera angles for training
while reserving the third for validation.

B. Experimental Setting on Data

1) Challenging Multi-View Data Experiment Setting: The
primary aim of our method is to enhance the robustness of
2D skeleton action models in real-world applications. Hence,
in our experiments, we employed random camera views to
simulate practical scenarios. To mimic camera view changes,
we introduced a method adopted in NTU-60, NTU-120 and
PKU-MMD that involves rotating the joint coordinates of
a 3D skeleton sequence along three axes using a rotation
matrix, thereby generating multi-view 2D skeleton sequences.
We randomly select three angles, α, β, and γ, each uniformly
distributed between [−90◦, 90◦] for every sequence, and apply
the rotation matrix R = RX(α)RY(β)RZ(γ) to the original
coordinates of the skeleton sequence and get the transformed
joint coordinates, where RX(α),RY(β) and RZ(γ) denote the
rotation matrix of the X, Y, and Z axes. Thus, three basic
rotation matrices with rotation angles about X, Y, and Z axis
are given as follows:

RX(α) =

24 1 0 0
0 cosα sinα
0 − sinα cosα

35 (9)

RY(β) =

24 cos β 0 − sin β
0 1 0

sin β 0 cos β

35 (10)

RZ(γ) =

24 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

35 (11)

Besides, single-person actions prevail, prompting our focus on
the primary individual in each skeleton sequence to mitigate
the impact of secondary actors. Following [36], we discard
irrelevant frames and standardize each sequence to 50 frames
via linear interpolation. Moreover, for a fair comparison, we
only use joint stream, as they are adopted by most of the
previous methods. In this study, we did not use any other data
augmentation to ensure that improvements could be attributed
to our model innovations.

2) Vanilla NTU Data Experiment Setting: To provide a fair
comparison with previous action recognition models, we also
follow the established approach by conducting experiments on
the original NTU dataset.

C. Implementation Details

1) Hyperparameters: We integrate VAM and PAM into
the third and fourth blocks of the 2D model to enhance
robustness by emphasizing key joints and critical time frames
while considering viewpoint and depth. The latent pose and
view embeddings are 256-dimensional, with a linear layer
ensuring consistency before cross-attention. Both modules use
four attention heads with a 1024-dimensional hidden layer.
For training, we use SGD for both pre-training and the full
pipeline. Pre-training follows a batch size of 1024, a dropout
rate of 0.1, and GELU activation. In the pose-view decoupling
stage, we adopt MixSTE [13] settings, with a 0.001 learning
rate, a Multi-Step LR scheduler (milestones at 90 and 130),
and 150 training epochs. In the pose-view distilling stage,
we follow ST-GCN [23] for consistency across GCN models,
using SGD with Nesterov momentum (0.9) and weight decay
(0.0001). The learning rate is 0.1, with 70 training epochs
and milestones at 40 and 60. For NTU RGB+D [55], NTU
RGB+D 120 [56], PKU-MMD [52], and UAV-Human [53],
we set the batch size to 256, with T = 50 and M = 1.

2) Detailed Architectures of the Modules: The 2D3-SkelAct
framework (Table I) includes a decoupler that pre-trains a
2D skeleton encoder to separate pose (ψ) and view (φ)
features using alternating temporal (TTB) and spatial (STB)
transformer blocks. The 3D decoder reconstructs skeletons
using ψ, while the 2D decoder reconstructs original views
with ψi and φ j or generates mixed views by pairing random
ψi and φ j. The pose-aware (PAM) and view-aware (VAM)
cross-attention modules refine features through dimensionality
reduction, cross-attention, and residual connections.

3) Conversion of Joint Settings: The NTU and UAV-
Human datasets have distinct keypoint structures, making
direct compatibility challenging. The UAV-Human dataset
follows the COCO-Keypoint protocol [62], [63], manually
labeling 17 major body joints, whereas the NTU dataset
[55], [56] adopts a different keypoint configuration. These
differences require careful adaptation to ensure effective fine-
tuning across datasets. To address this, we converted the
UAV-Human dataset’s 17 joint annotations to align with the
NTU keypoint protocol. As illustrated in Figure 4, gray
joints are common to both protocols and can be directly
mapped, ensuring consistency in the conversion process. How-
ever, orange joints highlight structural differences, requiring
additional processing. To bridge these gaps, we inferred the
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TABLE I
OVERVIEW OF THE DETAILED ARCHITECTURES OF THE INDIVIDUAL MOD-

ULES IN OUR 2D3 -SKELACT MODEL

Fig. 4. The joint sets and graph structures of NTU keypoint and COCO
keypoint.

missing NTU keypoints using existing COCO keypoints fol-
lowing [64]. In IV-F.1, we initially extract joint points from
wild web videos using a pose estimation method, formatted
according to the COCO keypoint standard. Subsequently, these
joint points are converted via the previously described joint
protocol conversion method, enabling category prediction by
the pre-trained model.

D. Qualitative Results

1) Comparison on Challenging Multi-View Recognition:
We evaluate 2D3-SkelAct across multiple model architec-
tures to assess its effectiveness in challenging multi-view
settings (IV-B). To ensure a fair comparison, we maintain
consistent training conditions, including the number of epochs
and backbone architecture, and use official implementation
codes whenever possible. As shown in Table II, 2D3-

SkelAct significantly improves skeleton action recognition on
NTU-60, NTU-120, and PKU-MMD when integrated with
baseline models. On NTU-120, the CNN-based HCN model
gains an average 5.4% improvement across two benchmarks,
while the attention-based DSTA-Net and GCN-based HDGCN
models improve by 0.65% and 4.6%, respectively. When
applied to BlockGCN, 2D3-SkelAct achieves state-of-the-
art performance across all three datasets. Even on PKU-II,
a dataset with extreme viewpoints and noise, 2D3-SkelAct
delivers substantial accuracy improvements, demonstrating its
robustness in real-world scenarios.

2) Comparison on Balanced Recognition: We test the
effectiveness of our method 2D3-SkelAct on the (balanced)
original NTU datasets by integrating the BlockGCN [61]
as the baseline model. We compare 2D3-SkelAct with state-of-
the-arts. As shown in Table IV, following the previous works,
the results for multi-stream fusion are reported, including joint
and bone (2-stream) as well as joint motion and bone motion
(4-stream). Notably, our method employs solely 2D skeletons
as input yet consistently demonstrates best performance across
multiple datasets, outperforming previous approaches that uti-
lize 3D skeletons. Specifically, 2D3-SkelAct with 4-stream
outperforms the latest methods with 6-stream (or 4-stream)
configurations, demonstrating the validity of the 2D3-SkelAct.
On the Northwestern-UCLA dataset, our method 2D3-SkelAct
achieves the best performance by integrating the HDGCN [26]
as the baseline model.

3) Comparison to 3D Skeletons: Compared to employing
baseline models directly on multi-view 3D skeletons, our
2D3-SkelAct demonstrates superior performance. Table V
illustrates that when integrated with the baselines, 2D3-
SkelAct significantly outperforms the baselines utilizing the
estimated 3D skeleton as input, often achieving results com-
parable to or even surpassing those using ground-truth 3D
skeletons as input. Given the prevalence of 2D skeleton data
in practical applications, the adoption of 2D3-SkelAct reduces
the computational overhead associated with converting 2D to
3D and mitigates additional noise introduced by explicit 3D
recovery.

4) Comparison of Computation Cost: We compared the
computational cost and accuracy of our proposed 2D3-SkelAct
against baseline methods (STGCN, CTRGCN) on challenging
multi-view. Results indicate our single-stream model achieves
higher accuracy with fewer parameters and less computational
cost compared to traditional 4-stream models. Although the
decoupler adds computational overhead during training, it
does not impact inference efficiency, confirming our model’s
effectiveness for practical applications.

E. Ablation Study

1) Network Architectures: We examined the embedding of
PAM and VAM within the model. Table VII indicates the best
performance when integrated into the third and fourth blocks,
where higher-level features are processed, optimizing the
model’s ability to capture pose depth and view-independence.
We also evaluated the core components of 2D3-SkelAct using
STGCN as the baseline. As shown in Table VIII, PAM,
VAM, and KD significantly boosted performance, with PAM
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TABLE II
PERFORMANCE COMPARISON OF CHALLENGING MULTI-VIEW 2D SKELETON-BASED ACTION RECOGNITION WITH SINGLE JOINT STREAM AND SINGLE

PERSON (SEE IV-B)

TABLE III
COMPARISON OF PERFORMANCE ON VANILLA NTU-60 AND NTU-

120 DATASETS. ∗S- MEANS THE FUSION RESULTS OF ∗ STREAMS.
NOTABLY, OUR 2D3 -SKELACT ONLY TAKES 2D SKELETONS AS

INPUT DURING INFERENCE, WHILE OTHER METHODS USE 3D
SKELETONS

improving by 0.4% and 0.9%, VAM by 2.6% and 3.4%, and
KD by 3.0% and 3.7%. The combined impact of these

TABLE IV

COMPARISON OF PERFORMANCE ON NORTHWESTERN-UCLA

components enhances the model’s robustness, view-
independence, and depth of learning.

2) Camera Viewpoints: We examine the impact of varying
projection viewpoints (α, β, and γ) on the performance of 2D3-
SkelAct. By uniformly adjusting these angles across different
ranges (see IV-B), we find that larger angle ranges improve
model performance, as shown in Table IX. Specifically, setting
the range to [−90◦, 90◦], which covers all possible angles,
results in the highest performance. This suggests that a
broad range of viewpoints enhances pose-view decoupling and
strengthens the 2D-to-3D supervision strategy.

3) Comparison to 3D Skeletons: Compared to employing
baseline models directly on multi-view 3D skeletons, our
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TABLE V

CLASSIFICATION ACCURACY COMPARISON AGAINST BASELINE METH-
ODS ON THE NTU-60, NTU-120 DATASETS BASED ON DATA EXPER-

IMENT IV-B. OUR 2D3 -SKELACT ONLY TAKES 2D SKELETON
SEQUENCES AS INPUT. “3D” IS THE GROUND-TRUTH 3D

SKELETON SEQUENCES. “3D*” IS THE ESTIMATED 3D
SKELETON SEQUENCES THROUGH 3D DECODER D′(·)

TABLE VI

COMPARISON OF COMPUTATION COST AND PERFORMANCE

TABLE VII

ABLATION STUDY FOR WHERE PAM AND VAM ARE ADDED IN THE
MODEL BLOCK

TABLE VIII

ABLATION STUDY FOR VERIFYING THE EFFECTIVENESS OF COMPONENTS

OF 2D3 -SKELACT IN NTU-60

2D3-SkelAct demonstrates superior performance. Table V
illustrates that when integrated with the baselines, 2D3-
SkelAct significantly outperforms the baselines utilizing the
estimated 3D skeleton as input, often achieving results

TABLE IX
ABLATION STUDY FOR THE EFFECT OF THE VIEWPOINT CHANGE RANGE

comparable to or even surpassing those using ground-truth 3D
skeletons as input. Given the prevalence of 2D skeleton data
in practical applications, the adoption of 2D3-SkelAct reduces
the computational overhead associated with converting 2D to
3D and mitigates additional noise introduced by explicit 3D
recovery.

4) Effectiveness of FD and LD: We performed an ablation
study to evaluate the contributions of Feature Distillation
(FD) and Logit Distillation (LD). The results demonstrate that
removing either FD or LD individually leads to a noticeable
decline in performance, confirming that both FD and LD
substantially improve model accuracy. Combining FD and LD
yields the best results, highlighting their complementary roles
in enhancing action recognition.

5) Visualization of the Attention Maps: Here, we explore
how the model’s focus on different joints varies with changing
viewpoints. By summing the rows of the inward adjacency
matrix in the AGCN model [24], we assess joint attention.
Figure 5 shows that the model prioritizes different joints
depending on the action: “headache” highlights hands and
head, “putting palms together” emphasizes hands and arms,
“kicking” focuses on legs and hips, and “walking towards”
draws attention to hands, legs, and arms. These patterns,
consistent with visual analyses, demonstrate AGCN’s localized
focus when projecting 3D skeletons into 2D, particularly
from diverse viewpoints. Additionally, 2D3-SkelAct enhances
this focus diversity, improving attention distribution and
strengthening action recognition. These findings suggest that
decoupled pose and view features, along with distillation in
2D3-SkelAct, enhance the model’s ability to identify critical
joints, improving motion feature extraction and classification
robustness.

6) Effectiveness of 2D3-SkelAct for Specific Actions: Fig-
ure 7 presents an accuracy comparison across 60 action
categories in the NTU-60 X-view before and after incorporat-
ing the STGCN into our 2D3-SkelAct framework. The data
illustrate that our method enhances accuracy for all action
categories. Notably, for actions such as “punch,” “kicking,”
and “pointing finger,” there is a significant improvement in
accuracy, exceeding 20%. These findings demonstrate that
2D3-SkelAct can seamlessly integrate with various encoders,
effectively aiding the skeleton feature extractor in learning the
motion representations of skeleton actions. This is particularly
beneficial in enhancing recognition accuracy from challenging
viewpoints.

7) Visualization of Decoupler’s Reconstruction: The recon-
struction outcomes of the decoupler, as depicted in Figure 8,
reveal that when integrating other viewpoints with reduced
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Fig. 5. Illustration of attention intensity in 2D3-SkelAct. w/ 2D3 and w/o 2D3 respectively mean the graph topology results of AGCN with and without
applying 2D3-SkelAct. Each circle’s size denotes a joint corresponding to the attention intensity. The angle means the projection viewpoints [α, β, γ] in the
rotation matrix.

Fig. 6. The action classification results of 2D3-SkelAct on (a) wild web videos and (b) UAV-Human. Marked below each picture is the label and score of
the top 3 action categories.

Fig. 7. Accuracy distribution of 2D3-SkelAct on the NTU-60 X-view
benchmark, using STGCN as the baseline model.

occlusion, the discrepancy between the synthesized 2D recon-
structed skeleton and the actual ground truth is remarkably
minimal. Both the 2D and 3D reconstructed skeletons, viewed
from the original perspective, align closely with the ground
truth. However, a minor deviation is noted at the position of the
left-hand joint, which is likely attributable to joint occlusion
occurring during movement. This successful reconstruction by
the decoupler underscores its capability to effectively separate
latent pose and view features.

F. Robustness and Generalizability

1) Finetuned Results on UAV-Human: We pretrain 2D3-
SkelAct on the NTU-120 X-set and then fine-tune

Fig. 8. Visualization of the reconstruction results performed by the decoupler
in the 2D 3-SkelAct model.

2D3-SkelAct on the UAV-Human dataset, chosen specifically
for its inclusion of aerial vehicle scenes, which pose viewpoint
challenges for action recognition. We align the 17 joints of
UAV-Human with the 25 joints of the NTU-120 dataset as
described in Section IV-C. As shown in Table X, the results
in CSv1 and CSv2 demonstrate that 2D3-SkelAct significantly
outperforms the fully supervised ST-GCN and CTRGCN in
both benchmarks. This superior performance highlights the
efficacy of 2D3-SkelAct, particularly in challenging viewpoint-
variant scenes.
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TABLE X
FINETUNED RESULTS ON UAV-HUMAN

TABLE XI
ABLATION STUDY FOR THE EFFECT OF FD AND LD.

“W/O” MEANS “WITHOUT”

2) Real-World Applications: We analyzed our 2D3-SkelAct
on the wild web videos captured from extreme viewpoints
and the UAV-Human videos. Using an off-the-shelf pose
estimation model [78], we extracted skeletons and converted
them into the NTU-60 joint protocol. We then employed the
2D3-SkelAct pre-trained by X-view benchmark on NTU-60
with STGCN as the baseline model for action recognition.
Figure 6 illustrates action videos presenting challenges like
occlusion, extreme viewpoints, and lack of depth, complicat-
ing recognition. Despite these hurdles, our model accurately
categorizes actions, showcasing the effectiveness of the 2D3-
SkelAct approach in extracting motion cues from 3D skeletons
and navigating complexities in challenging scenarios.

V. CONCLUSION

In this work, we propose 2D3-SkelAct, a novel model for
2D skeleton action recognition that overcomes the challenges
associated with the absence of view-independence and depth
in 2D data by utilizing the strength of 3D latent space.
2D3-SkelAct incorporates a pose-view feature decoupler, pre-
trained to construct the 3D latent space and decouple pose
and view features from input 2D skeleton sequences. Subse-
quently, pose-aware and view-aware cross-attention modules
are presented to facilitate 2D motion feature extraction by
fusing latent pose and view features, respectively. Meanwhile,
our pipeline distills comprehensive motion clues from the 3D
model to enrich motion features. We verify the performance of
our 2D3-SkelAct through extensive experiments, showing its
compatibility with various model architectures and consistent
improvement in action recognition.

Limitations: Human body occlusion, which results in inac-
curate pose estimation, limits the model’s action recognition

accuracy. Therefore, addressing the challenge of precise pose
estimation amidst occlusions will be a priority for enhancing
model performance.
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